June 29, 2015

Greenbank Airways
1140 Highway 47 East
Uxbridge, ON L9P 1R3

Reference: Revised Remediation Plan
1140 Highway 47E, Uxbridge, Ontario (the “Site”).

Dear Greenbank Airways,

D.L. Services Inc. ("DLS") is pleased to provide Greenbank Airways (the “Client”), with the following in response to the Golder Associates letter of June 13, 2015.

1. Revised Table 1 is below.

Table 1: Proposed Scope of Work – Supplementary Subsurface Investigation

<table>
<thead>
<tr>
<th>AREA OF POTENTIAL ENVIRONMENTAL CONCERN (APEC) (FIGURE SAMPLE ID)</th>
<th>Field Sample ID</th>
<th>GPS COORDINATES AND SAMPLE DEPTH</th>
<th>RATIONALE</th>
<th>FIELD WORK</th>
<th>ESTIMATED SOIL SAMPLES (Metals & Inorganics, PHC, VOCs, PAHs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported Fill (@BH1)</td>
<td>(BH15-1 Sa1)</td>
<td>658742.00 m E 4889107.00 m N</td>
<td>- Remove contamination exceeding Table 2 Standards for PAH & VOC</td>
<td>- approx 4m x 4m 2:1 sloped excavation x 2m deep - Field screen approx. 6 soil samples</td>
<td>4 verification x PAH, VOC 1 representative sample of stockpile x PAH, VOC</td>
</tr>
<tr>
<td>(GB-0003-)</td>
<td>658729.00 m E</td>
<td>- Remove contamination</td>
<td>- approx 4m x 4m</td>
<td>4 verification x</td>
<td></td>
</tr>
<tr>
<td>Imported Fill (@2014-2)</td>
<td>2014-4-24-SS-1</td>
<td>4889105.00 m</td>
<td>exceeding Table 2 Standards for PAH & VOC</td>
<td>2:1 sloped excavation x 2m deep - Field screen approx. 6 soil samples</td>
<td>PAH, VOC 1 representative sample of stockpile x PAH, VOC</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Imported Fill (@BH2)</td>
<td>(BH15-2 Sa3)</td>
<td>658787.00 m E 4889048.00 m N</td>
<td>- Remove contamination exceeding Table 2 Standards for PAH</td>
<td>- approx 4m x 4m 2:1 sloped excavation x 3m deep - Field screen approx. 8 soil samples</td>
<td>4 verification x PAH 1 representative sample of stockpile x PAH</td>
</tr>
<tr>
<td>Imported Fill (@2014-3)</td>
<td>(GB-0003-2014-4-29-SS-1)</td>
<td>658807.00 m E 4889068.00 m N</td>
<td>- Remove contamination exceeding Table 2 Standards for PAH</td>
<td>- approx 4m x 4m 2:1 sloped excavation x 3m deep - Field screen approx. 8 soil samples</td>
<td>4 verification x PAH 1 representative sample of stockpile x PAH</td>
</tr>
<tr>
<td>Imported Fill (@BH4/2014-5)</td>
<td>(BH15-4 Sa5) (BH15-4 Sa8) (BH15-4 Sa10)</td>
<td>BH-4 658929.00 m E 4889171.00 m N</td>
<td>- Remove contamination exceeding Table 2 Standards for PHC, PAH & metals.</td>
<td>- excavation will encompass both APEC locations - excavate top 2m of overburden - approx 20m x 20m 2:1 sloped excavation x 10m deep - approx 2m – 7.5m depth to PAH/PHC stockpile. - approx 7.5m – 10m depth to metals stockpile. - Field screen approx. 15 soil samples</td>
<td>8 verification x PAH 8 verification x PHC 4 verification x Metals 10 representative samples of overburden stockpile (PAH, PHC and Metals) 3 representative sample of metals stockpile 1 representative sample of PAH/PHC stockpile</td>
</tr>
<tr>
<td>Imported Fill (@BH5/2013-2)</td>
<td>(GB-0003-2014-06-02-SS1)</td>
<td>2014-5 658940.00 m E 4889163.00 m N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imported Fill (@BH5/2013-2)</td>
<td>(BH15-5 Sa11)</td>
<td>BH-5 658923.00 m E 4889127.00 m N</td>
<td>- Remove contamination exceeding Table 2 Standards for metals, PAH, PHC’s & VOC.</td>
<td>- excavation will encompass both APEC locations - excavate overburden to approx. 8.5m depth - approx 24m x 24m 2:1 sloped</td>
<td>8x PAH 4x VOC 4x PHC 4x Metals 15 representative sample of overburden stockpile (full</td>
</tr>
</tbody>
</table>
| Imported Fill (@BH-6) | (GB-003 2013-06-27 SS-2) | 2013-2 658909.00 m E 4889108.00 m N | Depth 9m | excavation x12m deep
- stockpile soils from 8.5m to 12m for characterization
- Field screen approx. 15 soil samples | suite) 3 representative sample of suspected impacted stockpile (full suite). |
|----------------------|---------------------------|-----------------------------------|-------------|---|--|
| Imported Fill (@BH-7/2013-4) | (GB-0003-2014-5-21-SS-1) | 2013-2 658909.00 m E 4889108.00 m N | Depth 9m | excavation x12m deep
- stockpile soils from 8.5m to 12m for characterization
- Field screen approx. 15 soil samples | suite) 3 representative sample of suspected impacted stockpile (full suite). |
| Imported Fill (@BH-7/2013-4) | (GB-0003-2014-5-21-SS-1) | 2013-2 658909.00 m E 4889108.00 m N | Depth 9m | excavation x12m deep
- stockpile soils from 8.5m to 12m for characterization
- Field screen approx. 15 soil samples | suite) 3 representative sample of suspected impacted stockpile (full suite). |
| Imported Fill (@BH-7/2013-4) | (GB-0003-2014-5-21-SS-1) | 2013-2 658909.00 m E 4889108.00 m N | Depth 9m | excavation x12m deep
- stockpile soils from 8.5m to 12m for characterization
- Field screen approx. 15 soil samples | suite) 3 representative sample of suspected impacted stockpile (full suite). |
| Imported Fill (@BH-7/2013-4) | (GB-0003-2014-5-21-SS-1) | 2013-2 658909.00 m E 4889108.00 m N | Depth 9m | excavation x12m deep
- stockpile soils from 8.5m to 12m for characterization
- Field screen approx. 15 soil samples | suite) 3 representative sample of suspected impacted stockpile (full suite). |
| Imported Fill (@BH-7/2013-4) | (GB-0003-2014-5-21-SS-1) | 2013-2 658909.00 m E 4889108.00 m N | Depth 9m | excavation x12m deep
- stockpile soils from 8.5m to 12m for characterization
- Field screen approx. 15 soil samples | suite) 3 representative sample of suspected impacted stockpile (full suite). |
<table>
<thead>
<tr>
<th>Imported Fill (@2013-3)</th>
<th>2013-4 658971.00 m E 4889061.00 m N Depth 5m</th>
<th>from 1.5m to 6m for characterization. - Field screen approx. 15 soil samples</th>
<th>stockpile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported Fill (@BH-8/2014-6)</td>
<td>(BH15-8 Sa4) (BH15-8 Sa6) (BH15-8 Sa10)</td>
<td>BH-8 658957.00 m E 488994.00 m N Depth 1.83m-4.88m 8.53m-9.75m</td>
<td>- excavate overburden to approx. 2.5m depth - approx 10m x 10m 2:1 sloped excavation x 5m deep - stockpile soils from 2.5m to 5m for characterization. - Field screen approx. 15 soil samples 4x Metals 5 representative sample of overburden stockpile (metals) 5 representative sample of suspected impacted stockpile (metals).</td>
</tr>
<tr>
<td>Imported Fill (@2014-10)</td>
<td>(BH15-10 Sa3)</td>
<td>659015.00 m E 4888968.00 m N Depth 1.22m-2.44m</td>
<td>- Remove contamination exceeding Table 2 Standards for PAH, PHC, BTEX, metals</td>
</tr>
<tr>
<td>Imported Fill (@BH-10)</td>
<td>(BH10)</td>
<td>2014-6 658958.00 m E 4889009.00 m N Depth 3.5m</td>
<td>- excavation will encompass both APEC locations - approx 20m x 20m 2:1 sloped excavation x 10m deep - stockpile soils from 0 – 5m for characterization of PAH, PHC/BTEX - stockpile soils from 5-10 m for characterization of metals - Field screen approx. 20 soil samples 8x PAH 4x PHC 4x Metals 4x BTEX 15 representative sample of PAH/PHC/BTEX stockpile 5 representative sample of metals stockpile</td>
</tr>
<tr>
<td>Imported Fill (@2013-3)</td>
<td>2013-5 658905.00 m E 4888992.00 m N Depth 1m</td>
<td>- Remove contamination exceeding Table 2 Standards for PHC</td>
<td>stockpile</td>
</tr>
<tr>
<td>Imported Fill (@2014-10)</td>
<td>(GB-0003-2014-7-22-103-2)</td>
<td>659005.00 m E 4888992.00 m N Depth 1m</td>
<td>- approx 5m x 5m 2:1 sloped excavation x 3m deep - Field screen approx. 6 soil samples 4x PAH 1 representative sample of stockpile</td>
</tr>
<tr>
<td>Imported Fill (@BH-8/2014-6)</td>
<td>(GB-0023-2014-6-2-SS-1)</td>
<td>2014-6 658958.00 m E 4889009.00 m N Depth 3.5m</td>
<td>- Remove contamination exceeding Table 2 Standards for PAH, PHC, BTEX, metals</td>
</tr>
</tbody>
</table>
| Imported Fill (@BH-11/2014-17) | BH-11
658952.00 m E
4888922.00 m N
Depth
8.53m-9.75m | - Remove contamination exceeding Table 2 Standards for PAH, PHC | - excavation will encompass both APEC locations
- excavate overburden to approx. 7.5m depth
- approx 20m x 20m 2:1 sloped excavation x 10m deep
- stockpile soils from 7.5m – 10m for characterization
- Field screen approx. 20 soil samples | 4x PAH
4 PHC
15 representative sample of overburden stockpile (PAH,PHC)
1 representative sample of PAH/PHC stockpile |
| --- | --- | --- | --- |
| Imported Fill (@BH-12/2014-16) | BH-12
659030.00 m E
4888647.00 m N
Depth
12.19m-13.11m | - Remove contamination exceeding Table 2 Standards for PAH | - excavation will encompass both APEC locations
- excavate overburden to approx. 11m depth
- approx 20m x 20m 2:1 sloped excavation x 13.5m deep
- Stockpile soils from 11m – 13.5m for characterization
- Field screen approx. 20 soil samples | 4x PAH
15 representative samples of overburden stockpile (PAH)
1 representative sample of PAH stockpile |
658999.00 m E
4888651.00 m N
Depth
3m | - Remove contamination exceeding Table 2 Standards for PAH | - excavate overburden to approx. 2m depth
- approx 10m x 10m 2:1 sloped excavation x 3.5m deep
- Stockpile soils from 2m – 3.5m for characterization
- Field screen 10 soil samples | 4x PAH
3 representative samples of overburden stockpile (PAH)
1 representative sample of PAH stockpile |
Imported Fill (@BH-13/2014-12)

(BH15-13 Sa1)
- **BH-13**
 - Depth
 - 0m-0.61m
 - 10.97m-12.19m
 - 14.63m-15.85m
 - 16.84m-17.07m

- **Remove contamination exceeding Table 2 Standards for metals, PAH, and in situ bioremediation of PHC & BTEX**

- **Drilling with installation of injection wells for the purpose of in situ bioremediation for soils from 14m to 17.5m with PHC/BTEX exceedances**
 - excavation will encompass both APEC locations
 - Approx 30m x 30m 2:1 sloped excavation x 17.5m deep
 - stockpile soils from 0 – 1.6m for characterization (metals)
 - stockpile overburden from 1.6m – 10m
 - stockpile soils from 10m to 14m for characterization (PAH)
 - Field screen approx. 30 soil samples

- **Excavation will encompass both APEC locations**

- **Representative sample of overburden stockpile**
- **Representative sample of metals stockpile**
- **Representative sample of PAH stockpile**

Imported Fill (@BH-15/2014-7)

(BH15-15 Sa8)
- **BH-15**
 - Depth
 - 10.97m-12.19m

- **Remove contamination exceeding Table 2 Standards PAH**

- **Excavation will encompass both APEC locations**
 - excavate overburden from 0 – 10m
 - Approx 30m x 30m 2:1 sloped excavation x 12.5m deep
 - stockpile soils from 10 – 12.5 m for characterization
 - Field screen approx. 30 soil samples

- **Excavation will encompass both APEC locations**

- **Representative sample of overburden stockpile**
- **Representative sample of metals stockpile**
- **Representative sample of PAH stockpile**

Imported Fill (@2014-20)

(GB-0003-2014-12-2-122)
- **BH-15**
 - Depth
 - 10m

- **Remove contamination exceeding Table 2 Standards Metals**

- **Excavate above grade pile (approx 3mx3m) down to 1.5 meters below**

- **Excavation will encompass both APEC locations**

- **Representative sample of stockpile**

- **Excavation will encompass both APEC locations**

- **Representative sample of stockpile**

- **Representative sample of stockpile**
<table>
<thead>
<tr>
<th>Imported Fill (@2014-1)</th>
<th>(GB-0003(00)2014-4-3-SS-1)</th>
<th>658755.00 m E 4889081.00 m N</th>
<th>- Remove contamination exceeding Table 2 Standards PAH</th>
<th>- Remove excavation and removal of above grade pile (approx 5m x 5m) down to 3 meters below grade - Field Screen 1 representative sample</th>
<th>4x PAH 1 representative sample of PAH stockpile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported Fill (@2014-8)</td>
<td>(DSC-SS2-70)</td>
<td>659026.00 m E 4888932.00 m N Depth 1m</td>
<td>- Remove contamination exceeding Table 2 Standards PAH</td>
<td>- excavation PAH impacted soils (approx 3m x 3m) down to 2 meters below grade - Field Screen 1 representative sample</td>
<td>4x PAH 1 representative sample of PAH stockpile</td>
</tr>
<tr>
<td>Imported Fill (@2014-9)</td>
<td>(DSC-SS8-70)</td>
<td>659032.00 m E 4888660.00 m N Depth 1m</td>
<td>- Remove contamination exceeding Table 2 Standards PAH</td>
<td>- excavation PAH impacted soils (approx 3m x 3m) down to 2 meters below grade - Field Screen 1 representative sample</td>
<td>4x PAH 1 representative sample of PAH stockpile</td>
</tr>
<tr>
<td>Imported Fill (@2014-11)</td>
<td>(GB-0003-2014-7-22-103)</td>
<td>659033.00 m E 4888713.00 m N Depth 1.5m</td>
<td>- Remove contamination exceeding Table 2 Standards PAH and VOC</td>
<td>- approx 5m x 5m 2:1 sloped excavation x 2m deep - Field screen approx. 6 soil samples</td>
<td>4x PAH 4x VOC 1 representative sample of stockpile</td>
</tr>
<tr>
<td>Imported Fill (@2014-13)</td>
<td>(GB-0003-2014-8-13-106)</td>
<td>659046.00 m E 4888687.00 m N Depth 1.5m</td>
<td>- Remove contamination exceeding Table 2 Standards PAH</td>
<td>- approx 5m x 5m 2:1 sloped excavation x 2m deep - Field screen approx. 6 soil samples</td>
<td>4x PAH 1 representative sample of stockpile</td>
</tr>
<tr>
<td>Imported Fill (@2014-14)</td>
<td>(GB-0003-2014-8-28-106)</td>
<td>658997.00 m E 4888698.00 m N Depth 1.5m</td>
<td>- Remove contamination exceeding Table 2 Standards Metals</td>
<td>- approx 3m x 3m 2:1 sloped excavation x 2m deep - Field screen approx. 6 soil samples</td>
<td>4x Metals 1 representative sample of stockpile</td>
</tr>
<tr>
<td>Imported Fill (@2014-15)</td>
<td>(GB-0003-2014-9-25-111)</td>
<td>659075.00 m E 4888496.00 m N</td>
<td>- Remove contamination exceeding Table 2 Standards PAH</td>
<td>- approx 5m x 5m 2:1 sloped excavation x 2m deep</td>
<td>4x PAH 1 representative sample of stockpile</td>
</tr>
<tr>
<td>15)</td>
<td>Depth</td>
<td>- Field screen approx. 6 soil samples</td>
<td>sample of stockpile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imported Fill (@2014-19)</td>
<td>1m</td>
<td>- Remove contamination exceeding Table 2 Standards Metals</td>
<td>- approx 3m x 3m 2:1 sloped excavation x 2m deep - Field screen approx. 6 soil samples</td>
<td>4x Metals 1 representative sample of stockpile</td>
<td></td>
</tr>
<tr>
<td>(GB-0003-2014-11-27-123-2)</td>
<td>659053.00 m E 4888833.00 m N pile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imported Fill (@2015-1)</td>
<td>1m</td>
<td>- Remove contamination exceeding Table 2 Standards PAH</td>
<td>- excavate above grade pile (approx 3mx3m) down to 1.5 meters below grade - Field Screen 1 representative sample</td>
<td>4x PAH 1 representative sample of stockpile</td>
<td></td>
</tr>
<tr>
<td>(GB-0022-2015-1-6-SS-1)</td>
<td>659132.00 m E 4888664.00 m N pile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imported Fill (@2015-2)</td>
<td>1m</td>
<td>- Remove contamination exceeding Table 2 Standards PHC</td>
<td>- excavate above grade pile (approx 3mx3m) down to 1.5 meters below grade - Field Screen 1 representative sample</td>
<td>4x PHC 1 representative sample of stockpile</td>
<td></td>
</tr>
<tr>
<td>(GB-0003-2015-2-12-136)</td>
<td>659104.00 m E 4888729.00 m N pile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imported Fill (@2015-3)</td>
<td></td>
<td>- Remove contamination exceeding Table 2 Standards Metals</td>
<td>- excavate overburden to approx. 8m depth - approx 20m x 20m 2:1 sloped excavation x 10.5m deep - Stockpile soils from 8m – 10.5m for characterization - Field screen approx. 15 soil samples</td>
<td>4x Metals 4x VOC 15 representative samples of overburden stockpile (PAH and VOC) 3 representative sample of PAH and VOC stockpile</td>
<td></td>
</tr>
<tr>
<td>(Downtown)</td>
<td>659110.00 m E 4888456.00 m N pile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imported Fill (@2013-1)</td>
<td>9m</td>
<td>- Remove contamination exceeding Table 2 Standards for PAH and VOC</td>
<td></td>
<td>Estimated No. Samples Analyzed</td>
<td></td>
</tr>
<tr>
<td>(GB-003-2013-06-18-SS-1)</td>
<td>659072.00 m E 4888581.00 m N pile</td>
<td></td>
<td>76x VOC(BTEX) 261x PAH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. The lateral extent of the in-situ bioremediation zone at the target depth zone will have to be determined in the field prior to injection through additional borehole investigations. These investigations will be scheduled within the first few days (as early as possible) of the remediation so that injections can be designed to give the longest treatment time possible. Near the end of the specified 60 day field program, conformation monitoring will be conducted via additional borehole sampling.

3. There is no need to show the proposed metals stockpile locations on Figure 1 as the intent of this figure is to show the approximate remedial excavation locations. As indicated in the text of the work plan, the soil with potential metals impacts will be stockpiled next to the excavation from whence it came and marked with a stake. The chosen locations for each potential metals stockpile as well as the locations of the confirmatory samples following their removal will be shown on figures in the final report.

4. Following stockpile characterization through the collection and analysis of representative samples, the soil associated with any sample that reports analytes associated with the fill that does not meet the Table 2 standards will be removed to an offsite licensed receiver. After the stockpiled soil is removed, additional confirmatory representative samples will be collected from the location of the former stockpiles to ensure that the material was sufficiently removed.

5. The soil sampling procedures to be used to characterize the stockpiles will be the same procedures that the MOECC now requires for characterization of the treated soil stockpiles at soil recycling facilities. These sampling procedures are based on the procedures for collecting representative samples from large piles contained within the MOECC document “Principles of Sampling and Analysis of Waste for TCLP Under Ontario Regulation 347” (February 2002). This document states that the preferred method of sampling piles is for composite samples to be obtained which represent known locations within the pile. The sample aliquot locations will be chosen in a properly randomized manner from locations within each stockpile no more than 4 metres apart (i.e. 2m radius around a central point), with the exception that known or suspected “hotspots” must be sampled. We agree that in the absence of other available guidance, stockpile sampling frequency should be based on Table 2, Schedule E of O.Reg. 153/04, and understand that the MOECC will adopt Table 2 frequencies of samples for laboratory analysis for the characterization of treated soil stockpiles at soil recycling facilities. Each composite sample will be comprised of a minimum of five aliquots. Each aliquot will be collected in its own dedicated Ziplock bag for field screening. Where VOC analysis is
required, the VOC sample will be collected from the aliquot reporting the highest PID reading for each sample prior to compositing for the remaining parameters. For metals and non-volatile organics, the aliquots will be combined into a single composite sample. The objective of this composite sampling is to ensure that the samples best represent the volume of material nearest each point of interest. As a result of applying this guidance, a stockpile of >500 m³ to 1500 m³ would require a minimum of 10 composite samples for laboratory analysis, each comprised of a minimum of 5 aliquots, taken no more than 4 metres apart.

6. Confirmatory soil samples from the excavations will be selected based on the results of field screening (i.e. maximum readings) and any other evidence (visual, olfactory, etc.) of contaminants of concern. We agree that in the absence of other available guidance, excavation confirmation sampling frequency should be based on Table 3, Schedule E of O.Reg. 153/04.

7. The proposed XRF operator will be Ron Mahoney, his declaration of training is attached. The daily calibration of the PID was described on page 10 of the Revised Remediation Plan. The XRF does not have a daily calibration procedure, but has an internal self-diagnostic function.

8. Page 8, paragraph 2 of the revised Remediation Plan does not discuss the duplicate sampling frequency. This discussion was found on page 11, paragraph 3 of the revised remediation plan and was originally on page 8, paragraph 2 in the first version of the remediation plan. DLS trusts that Golder has reviewed the most current version of the Remediation Plan. DLS has proposed to submit one (1) field duplicate soil sample for every ten (10) assessment samples. This frequency meets the accepted industry practice and will remain as written.

9. It is industry standard practice for technical reports to include sample location figures and should not need to be specifically referenced in a work plan. The sample location figures will be as accurate as possible without the aid of a site survey and keeping in mind that personnel will not be entering the deeper excavations due to safety concerns. In these situations, sample locations will be approximated.

10. The anticipated schedule for report submission to the Township was provided in the Revised Remediation Plan on pages 11 and 12. A draft report will be provided to the Client within 30 days of receipt of all laboratory data and the final report will be issued two days following receipt of the Clients comments on the draft.

11. Dust Control Plan– incorporated into Erosion and Sedimentation Plan

12. Erosion Control Plan – attached

13. Our client has instructed DLS that any of the reported impacts that cannot be treated in-situ will be characterized for removal from site.
4.0 CLOSURE

DLS is prepared to commence remediation work immediately. To avoid further delay caused by Golders information requests and to expedite the remediation, we suggest that Golder meet with us on-Site so that any additional questions posed by them can be addressed forthwith. We are available for a meeting any time next week.

Yours truly,

D.L. Services Inc.

Scott Pitsch, P.Geo-Limited, QP
Operations Manager

Kevin McClintock, B.Sc., P. Eng, QP
Sr. Environmental Engineer

Attachments:

Reference: D.L. Services Inc., File Number 1203-966
Work Plan, Remedial Action Plan
1140 Highway 47E Uxbridge, Ontario
XRF Training declaration

I attest that __________ RON MAHONEY __________ has successfully completed on this
26 day of JUNE, 2013 the following training sessions:

3 hours (minimum 3 hours) of classroom training in the theory of the XRF method and
radiation safety in accordance with the NRCan Training Curriculum for XRF Operators as
published in the Examination Preparation Booklet.

2 hours (minimum 2 hours) demonstration and practice in using XRF analyzer(s) to make
accurate measurements

2 hours (minimum 2 hours) demonstration and practice in radiation safety including the
safe set up, handling, operating, maintenance and storage of XRF analyzers.

Instructor Name: __________ ANDREW WIBLETT __________
(Please print)
The Instructor/Trainor/Signee must be approved by NRCan, and verified against
an active listing of acceptable personnel that is maintained by NRCan.

Signature: __________ A. Nible __________

XRF Manufacture: __________ Thermo Scientific Niton __________

NRCan Registration number: __________ 18337 __________

Telephone: __________ 905-282-9974 __________

Date: __________ 2013/06/26 __________
(yyyy/mm/dd)